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Spring–mass systems have long been used to suppress excess vibration in
structural systems. In this paper, a chain of oscillators is used as a passive means
of introducing nodes for the normal modes of a one-dimensional, arbitrarily
supported, linear elastic structure, where a desired node can either coincide with
the oscillator chain location or can be located elsewhere. It is shown that when
the oscillator chain and the node are collocated, it is always possible to induce
a node at any location along the structure for any given normal mode. When the
oscillator chain and the node are not collected, however, it is only possible to
induce a node for certain normal modes. Finally, a procedure to guide the proper
selection of the oscillator chain parameters in order to induce nodes is outlined
in detail.
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1. INTRODUCTION

The free vibration of a linear elastic structure carrying oscillators has been studied
by many authors over the years, and hence only a few selected historical references
are given here [1–6]. In recent years, Dowell [7] used the Lagrange multiplier
approach to obtain the frequency equation of a beam with an elastically mounted
mass. He also examined the effects of the added oscillator on the natural
frequencies of the combined system. Nicholson and Bergman [8] used the dynamic
Green’s function approach to derive the characteristic equation for the natural
frequencies of a cantilevered beam connected at discrete points to oscillators with
no rigid body degree of freedom, and of a simply supported beam connected at
discrete points to oscillators with a rigid body degree of freedom. Ercoli and Laura
[9] used the assumed-modes method to study the effects of concentrated masses
elastically mounted to a beam on the frequencies of the system. Rossi et al. [10]
examined the free vibrations of Timoshenko beams carrying elastically mounted
concentrated masses. They solved the problem exactly and validated their solution
using the finite element method. Kukla and Posiada<a [11] investigated the free
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vibrations of beams with elastically mounted masses. They obtained closed form
expressions for the frequency equations by means of the Green’s functions.
Gürgöze [12] examined the free vibration of a cantilever beam with an end mass
to which an oscillator is attached. He used the Lagrange multiplier formalism in
analyzing the free vibration of the system.

In all the above papers, the authors used various approaches to analyze the
effects of oscillators on the free vibration and natural frequencies of the combined
system, but none discussed the idea of using an oscillator chain as a possible means
of imposing nodes to the normal modes of the combined system. Nicholson and
Bergman [8] did mention that when the ith natural frequency of a combined system
consisting of a beam connected to an oscillator with a rigid body degree of freedom
is equal to the oscillator natural frequency, then the oscillator acts as a vibration
absorber for the ith mode of vibration. However, they did not pursue the issue
of how an oscillator can be utilized to induce nodes to the normal modes of the
combined system.

In this paper, it will be shown that a chain of oscillators can be used to passively
impose nodes to the normal modes of any one-dimensional elastic structure. By
properly selecting values for the oscillator parameters and by properly choosing
an attachment location for the oscillator chain, one can dictate the location of the
nodes anywhere along the structure, and for any normal mode. This is important
because it would allow us to place instruments sensitive to vibration at any desired
location along the structure, i.e., at or near a node.

2. THEORY

2.1.      

Consider an arbitrarily supported, one-dimensional, linear elastic structure to
which is attached a chain of undamped oscillators (see Figure 1). Using the
assumed-modes method [13], the physical deflection of the structure at a point x
is given by

w(x, t)= s
N

i=1

fi (x)hi (t), (1)

where the fi (x) are the eigenfunctions of the unconstrained structure (i.e., the
structure without any attachments), that serve as the basis functions for this
approximate solution, the hi (t) are the corresponding generalized co-ordinates,
and N is the number of modes used in the assumed-modes expansion. The total
kinetic energy of the combined system can be expressed as

T=
1
2

s
N

i=1

Miḣ
2
i (t)+

1
2

s
M

i=1

miż2
i (t), (2)

where the Mi are the generalized masses, mi is the mass of the ith oscillator, zi (t)
is its displacement, M is the total number of oscillators in the chain, and an
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overdot denotes a derivative with respect to time. The total potential energy is
given by

V=
1
2

s
N

i=1

Kih
2
i (t)+

1
2

s
M

i=1

ki [zi (t)− zi−1(t)]2, z0(t)=w(x1, t), (3)

where the Ki are the generalized spring constants, ki is the spring stiffness of the
ith oscillator, and x1 denotes the constraint location of the chain of oscillators.

Applying Lagrange’s equations and assuming simple harmonic motion,

hi (t)= h̄i ejvt, zi (t)= z̄i ejvt, (4)

where j=z−1 and v is the natural frequency of the combined system, the
eigenvalue equation for the system of Figure 1 is given by

$[K]
[R]T

[R]
[k]%$h̄z̄%=v2$[M]

[0]T
[0]
[m]%$h̄z̄%, (5)

Figure 1. An arbitrarily supported, one-dimensional, linear elastic structure to which is attached
a chain of undamped oscillators.
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Figure 2. A grounded chain of undamped oscillators.

where h̄=[h̄1 h̄2 . . . . h̄N ]T is the vector of generalized co-ordinates,
z̄=[z̄1 z̄2 . . . z̄M ]T, the M×M matrices [m] and [k] are

[m]=diag [mi ], [k]= tridiag [−ki ki + ki+1 −ki+1]; (6)

the N×N matrices [M] and [K] are

[M]= [Md], [K]= [Kd]+ k1f(x1)fT(x1), (7)

where [Md] and [Kd] are diagonal matrices whose ith diagonal elements are Mi and
Ki , respectively, and

f(x1)= [f1(x1) f2(x1) · · · fN (x1)]T; (8)

the N×M matrices [R] and [0] are given by

[R]= [−k1f(x1) 0 0 · · · 0] and [0]= [0 0 0 · · · 0], (9)

where each of the M column vectors in the matrix is of length N. Finally, note
that [M] is a diagonal matrix, and [K] is a diagonal matrix modified by a simple
rank one matrix.

By comparing the natural frequencies of the combined system of Figure 1 to
those of the grounded oscillator chain of Figure 2, one can determine whether the
constraint location, x1, coincides with the node of a normal mode of the combined
system. Consider for now the special case where the linear elastic structure is
carrying a single oscillator (M=1), with stiffness k and mass m. Then equation
(5) simplifies to

$ [K]
−kfT(x1)

−kf(x1)
k %$h̄z̄%=v2$[M]

0T

0
m%$h̄z̄%. (10)
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From the second of equations (10), one has

− kfT(x1)h̄+ kz̄=v2mz̄ (11)
or

(k−v2m)z̄= kfT(x1)h̄= k s
N

i=1

fi (x1)h̄i . (12)

Note that if v2 = k/m, then

s
N

i=1

fi (x1)hi (t)=w(x1, t)=0. (13)

Thus, if the simple oscillator natural frequency, zk/m, is equal to one of the
combined natural frequencies of the system, say vsys

j , then the oscillator is attached
at a node of the jth normal mode. Using the generalized differential equation for
the combined system, Nicholson and Bergman [8] showed the above for the special
case where the linear structure is an Euler–Bernoulli beam. Here, the
assumed-modes method was used to reach the same conclusion for any linear
elastic structure.

Let us now return to the general case of a structure carrying a chain of M
oscillators. From equation (5), one has

[R]Th̄+[k]z̄=v2[m]z̄. (14)

Rearranging the above yields

([k]−v2[m])z̄=−[R]Th̄. (15)

For a given constraint location, x1, assume one of the natural frequencies of the
combined system satisfies the free vibration frequency equation for the grounded
oscillator chain of Figure 2:

det ([k]−v2[m])=0. (16)

For non-trivial z̄, equation (16) holds if and only if

([k]−v2[m])z̄=−[R]Th̄= 0 (17)
or

w(x1, t)= s
N

i=1

fi (x1)hi (t)=0. (18)

Thus, when a natural frequency of the combined system in Figure 1, say vsys
j ,

coincides with a natural frequency of the grounded oscillator chain of Figure 2,
then the attachment location, x1, is a node for the jth normal mode of the
structure, i.e., the oscillator chain acts as a vibration absorber for the jth mode
of vibration.

While it may appear that the free response of the combined system of Figure 1
requires one to solve a generalized eigenvalue problem of size (N+M)× (N+M)
(see equation (5)), by simple manipulation one can reduce the generalized
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eigenvalue problem to a simple scalar equation consisting of the sum of N terms,
resulting in substantial computational savings. From the last equation of equation
(5), one has

kMz̄m−1 = aMz̄M with aM = kM −v2mM . (19)

From the next to last equation of equation (5), one obtains

kM−1z̄M−2 = aM−1z̄M−1 with aM−1 = (kM−1 + kM )−
k2

M

aM
−v2mM−1. (20)

The above is repeated until one obtains

k1f
T(x1)h̄= a1z̄1 with a1 = (k1 + k2)−

k2
2

a2
−v2m1. (21)

The recursive formula for the coefficients ai is thus given by

ai =(ki + ki+1)−
k2

i+1

ai+1
−v2mi , i=1, 2, . . . , M−1. (22)

Equation (5) also gives

[K]h̄− k1f(x1)z̄1 =v2[M]h̄. (23)

Solving for z̄1 by using equation (21) and substituting its expression into equation
(23) yields

([Kd]+ a0f(x1)fT(x1))h̄=v2[Md]h̄, (24)

where the coefficient a0 is given by

a0 = k1 −
k2

1

a1
(25)

and it depends on v and all the oscillator parameters, the ki’s and mi’s, for
i=1, . . . , M. Note that by simple algebraic manipulation, the
(N+M)× (N+M) generalized eigenvalue problem of equation (5) has been
reduced to one of size N×N. For non-trivial h̄, the eigenvalues, v2, must make
the following N×N characteristic determinant equal to zero:

det {[Kd]+ a0f(x1)fT(x1)−v2[Md]}=0. (26)

Upon rearranging, equation (26) becomes

det {[Kd]−v2[Md]} det {[I]+ a0([Kd]−v2[Md])−1f(x1)fT(x1)}=0. (27)

After some algebra, equation (27) can be shown to be identical to:

t
N

i=1

(Ki −v2Mi )01+ a0 s
N

i=1

f2
i (x1)

Ki −v2Mi1=0. (28)

The above scalar equation gives the natural frequencies of the combined system
of Figure 1. When x1 does not coincide with any node of the unconstrained
component modes, the eigenvalues of the constrained and unconstrained systems
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must be distinct; thus Ki $v2Mi and the frequency equation of Figure 1 simplifies
to

1+ a0 s
N

i=1

f2
i (x1)

Ki −v2Mi
=0, (29)

the solution of which can be very easily obtained. However, when x1 is coincident
with a node of the ith unconstrained component mode, then one of the natural
frequencies of the combined system will be identical to zKi /Mi , which is the
natural frequency of the ith unconstrained component mode, and the remaining
natural frequencies can still be extracted by solving equation (29).

2.2.       

The above results show that the simple oscillator chain behaves as a vibration
absorber. As long as a natural frequency of the combined system coincides with
a natural frequency of the grounded chain of oscillators, the oscillator chain
attachment location, x1, is a node. For this case, we say that the oscillator chain
and the node are collocated.

For a given application, suppose it is desired that the combined system have a
node at x1 only for certain normal modes. This requirement precludes us from
using a rigid support at this location, since a node would then be introduced for
all the normal modes. The results obtained in the previous section show that
having a node at x1 for certain normal modes can be achieved by simply attaching
an oscillator chain, with appropriate oscillator parameters, at that location.

Assuming that x1 does not coincide with any node of the mode shapes of the
unconstrained structure, the frequency equation for the system of Figure 1 is given
by equation (29), where the coefficient a0 can be expressed as

a0 =
N(v)
D(v)

. (30)

It can be shown that by setting the denominator polynomial, D(v), equal to zero,
one obtains the free vibration frequency equation for the grounded chain of
oscillators of Figure 2. Thus, when a natural frequency of the combined system
of Figure 1, vsys

j , equals a natural frequency of the grounded oscillator chain of
Figure 2, vosc

r , equation (29) simplifies to

s
N

i=1

f2
i (x1)

Ki −(vosc
r )2Mi

=0. (31)

For a given x1, equation (31) allows us to determine a set of vosc
r . These vosc

r

correspond to the possible natural frequencies of the grounded oscillator chain for
which x1 is a node. Depending on which normal modes one wishes to have a node
for at x1, one selects the ki and mi accordingly. For instance, suppose one requires
a node at x1 only for the third normal mode. In this case, one can attach a single
oscillator, of parameters k and m, such that the third natural frequency of the
combined system is identical to the grounded oscillator natural frequency, i.e.,
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vsys
3 =zk/m. To impose a node at x1 for multiple normal modes, one can attach

a chain of oscillators whose parameters, the ki’s and mi’s, are chosen such that the
natural frequencies of the desired normal modes are identical to the natural
frequencies of the grounded chain of oscillators. The selection of the ki’s and mi’s
requires one to solve an inverse eigenvalue problem governing the free vibration
of the grounded oscillator chain of Figure 2, i.e., knowing the desired natural
frequencies of the oscillator chain of Figure 2, one determines the required ki’s and
mi’s.

Finally, because a node can be imposed at x1 for the jth normal mode as long
as vsys

j =zk/m, the selection of the oscillator parameters is not unique. The actual
choice is generally dictated by limitations placed on the vibration amplitude of the
oscillator mass.

2.3.        

The eigenfunction or mode shape, W(x), of the combined system of Figure 1
can be obtained from equation (1) as follows:

w(x, t)= s
N

i=1

fi (x)hi (t)=W(x)z(t). (32)

Using the Lagrange multiplier approach [7], it can be shown that the ith element
for the jth eigenvector of the combined system of Figure 1 is given by

h̄j
i =

fi (x1)
Ki −(vsys

j )2Mi
, (33)

where vsys
j is the jth natural frequency of the overall system. Thus, the jth mode

shape of the combined system is given by

Wj (x)= s
N

i=1

fi (x)fi (x1)
Ki −(vsys

j )2Mi
. (34)

When a node is imposed at x= x1 for the jth normal mode, equation (34) simplifies
to

Wj (x1)= s
N

i=1

f2
i (x1)

Ki −(vsys
j )2Mi

=0. (35)

Comparing equations (31) and (35), it is noted that when vsys
j =vosc

r , the two
equations become identical. Thus, it has again been demonstrated that if the jth
natural frequency of Figure 1 is equal to an oscillator natural frequency of
Figure 2, the oscillator chain is attached to a node of the jth normal mode.

Suppose one wishes to impose a node at x2 for a selected set of normal modes.
However, due to various physical constraints, one cannot attach a chain of
oscillators at that location, but instead at some other location x1. For this case,
the oscillator chain and the node are said to be not collocated, since x1 $ x2. Of
great interest then is the possible oscillator chain attachment location, x1, and the
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corresponding oscillator parameters, the mi’s and ki’s, that one ought to select in
order to have a node at x2. From equation (34), a node at x2 for the jth normal
mode requires that

Wj (x2)= s
N

i=1

fi (x2)fi (x1)
Ki −(vsys

j )2Mi
=0. (36)

To determine the possible oscillator chain locations and the oscillator parameters
which lead to a node at x2, the following steps are required. (1) For a desired node
location, x2, x1 (the oscillator chain attachment location) is varied and the set of
vsys

j (the natural frequencies of the combined system) which satisfies equation (36)
is computed. (2) The vsys

j dictate the normal modes for which one can have a node
at x2. If a given vsys

j falls outside the frequency band for which the desired normal
mode lies, it is impossible to impose a node at x2 for that particular normal mode
(this is discussed in more detail in section 4). (3) For a given x1 and vsys

j (vsys
j

denotes the natural frequency of the jth normal mode for which one wishes to have
a node at x2), one then solves for the values of mi and ki of the oscillator chain
which satisfy equation (29). (4) For a given x1 and vsys

j , the selection of mi and
ki is not unique; the actual choice is generally limited by the vibration amplitudes
of the mi .

3. RESULTS

Suppose one wishes to impose a node at x1 for certain normal modes of an
arbitrarily supported one-dimensional structure. This can be easily realized by
attaching a chain of oscillators, with appropriate values of ki and mi , such that
the oscillator chain and the node are collocated. To illustrate this method, a simply
supported uniform Euler–Bernoulli beam is considered, whose normalized
eigenfunctions (with respect to the linear density of the beam) and eigenvalues are
given by

fi (x)=X 2
rL

sin
ipx
L

and li =(ip)4 EI
(rL4)

, (37)

where r is the linear density or the mass per unit length of the beam and L is its
length. Then

Mi =g
L

0

rf2
i (x) dx=1 and Ki =g

L

0

EI0d2fi

dx21
2

dx= li , (38)

where E is the Young’s modulus and I is the moment of inertia of the cross-section
of the uniform beam. Equation (31) thus reduces to

s
N

i=1

sin2(ipx1/L)
(ip)4 − (v̄osc

r )2 =0, (39)
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where v̄osc
r =vosc

r /zEI/(rL4) is the rth dimensionless natural frequency which
satisfies equation (39). Equation (39) allows one to vary the node location, x1, and
to compute the required v̄osc

r . To impose a node at x1 for the jth normal mode,
a single oscillator is attached, whose grounded natural frequency satisfies
equation (39) and is equal to v̄sys

j =vsys
j /zEI/(rL4). To impose a node at x1 for

p normal modes simultaneously, a chain of p oscillators is attached, whose
grounded natural frequencies satisfy the solution of equation (39), and are equal
to the natural frequencies of the p normal modes.

Figure 3 shows a plot that could be used to design such combined systems. It
depicts the dimensionless oscillator natural frequency, v̄osc

r , versus the node
location, x1/L, when the oscillator chain and the node are collocated, for N=20
(in all the subsequent analyses, N=20). Because the simply supported beam is
symmetric about its midspan, a node at x1/L also leads to a node at (1− x1/L).
Thus, the x-axis is only shown from x1/L=0 to 1/2. Dowell noted in reference
[7] that if a spring–mass combination (which by itself has a rigid body degree of
freedom) is attached to another system, the frequencies that were originally higher
than the spring–mass natural frequency are increased, those that were originally
lower are decreased, and a new natural frequency appears between the original
pair of frequencies nearest the oscillator natural frequency. Thus one would expect
the v̄osc

r of equation (39) to lie between the natural frequencies of a simply
supported Euler–Bernoulli beam. These natural frequencies are given by
v̄beam

i =(ip)2, and they are represented by the horizontal lines in Figure 3. As
anticipated, the range of oscillator natural frequency within which one can impose
a node for a given normal mode is indeed banded. Specifically, v̄beam

r E v̄osc
r E v̄beam

r+1.

Figure 3. The rth oscillator natural frequency, v̄osc
r , of equation (39) versus the node location,

x1/L, when the oscillator and the node are collocated. The horizontal line, v̄beam
i =(ip)2, represents

the ith natural frequency of a simply supported Euler–Bernoulli beam.
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T 1

The required oscillator natural frequency, V� l , in order to induce a node at 0·37L
for the lth normal mode only. The vsys

j ’s are the natural frequencies of the combined
system for the chosen V� l , and v̄beam

i is the ith natural frequency of a simply supported
uniform Euler–Bernoulli beam. The natural frequencies are all non-dimensionalized

by dividing by zEI/(rL4). The oscillator and node locations are collocated.

V� 2 =31·0875 V� 3 =84·2826 V� 4 =121·7408 V� 5 =237·2121 v̄beam
i =(ip)2

v̄sys
1 5·8965 5·9571 5·9621 5·9655 v̄beam

1 =9·8696
v̄sys

2 31·0875 33·1385 33·2833 33·3794 v̄beam
2 =39·4784

v̄sys
3 61·2517 84·2862 85·0820 85·4992 v̄beam

3 =88·8264
v̄sys

4 90·6679 114·7106 121·7408 126·3606 v̄beam
4 =157·9137

v̄sys
5 164·6456 211·3124 230·2278 237·2121 v̄beam

5 =246·7401
v̄sys

6 247·6237 259·2890 285·6916 321·3917 v̄beam
6 =355·3058

Outside the frequency band, one cannot impose any additional node for that given
normal mode. The points of intersection between the (r+1)th horizontal line and
the v̄osc

r curve correspond to the node locations of the (r+1)th normal mode of
a simply supported Euler–Bernoulli beam. At these locations, no oscillators are
needed to induce nodes. Conversely, at these locations, an oscillator with any
natural frequency will lead to a node. Not surprisingly, for a given node location,
the oscillator natural frequency increases with the normal mode number, implying
that in order to induce a node for a high mode, one needs to attach an oscillator
with a large spring–mass natural frequency. Finally since v̄osc

1 q v̄beam
1 , it is not

possible to induce a node for the first normal mode of the combined system
considered here.

To impose a node at x1 for a given normal mode, a single oscillator is attached,
whose natural frequency can be extracted from the design plot of Figure 3. Let
V� l denote the required oscillator natural frequency for which the lth normal mode
of the combined system has a node at x1. Table 1 shows the required V� l in order
to induce a node at x1 =0·37L, when the oscillator and the node are collocated.
For the system under consideration, since it is impossible to induce a node for the
first normal mode, V� r+1 = v̄osc

r , r=1, 2, . . . , which implies that for a given x1, the
rth root of equation (39), v̄osc

r , gives rise to a node at x1 for the (r+1)th the normal
mode of the combined system. Moreover, observe that the natural frequencies of
a simply supported Euler–Bernoulli beam (see the entries in the sixth column) that
are lower than the oscillator natural frequency are decreased, while those that are
higher are increased, and a new natural frequency is embedded between the
original pair of frequencies nearest to the oscillator natural frequency. This is
consistent with the results found by Dowell [7]. Figure 4 illustrates the first five
normal modes of the combined system when an oscillator of frequency V� l , given
in Table 1, is attached at 0·3L. Note that when v̄sys

j =V� j , the oscillator gives rise
to a node at its attachment location for the jth normal mode, as clearly depicted
in Figure 4.
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Figure 4. The first five normal modes of a combined system consisting of a simply supported
Euler–Bernoulli beam to which is attached an undamped oscillator at 0·37L, of natural frequency
V� 2 =31·0875 (a) and V� 3 =84·2826 (b). Modes 1 to 5 correspond to curves – · –, – – – , - - - , . . . . ,
——, respectively. The oscillator and the node are collocated.

To impose a node at x1 for p normal modes simultaneously, a chain of p
oscillators is attached, with appropriate oscillator parameters, at x1. For
definiteness, suppose one wishes to impose a node at 0·23L for the second and
fourth normal modes. To impose a node at x1 for the second normal mode only,
a single oscillator is attached at x1, whose natural frequency is given by V� 2 = v̄osc

1 .
To impose a node at x1 for the fourth normal mode only, a single oscillator is
attached at x1 of frequency V� 4 = v̄osc

3 . To impose a node for the second and fourth
normal modes simultaneously, a chain of two oscillators is attached at x1, whose
grounded oscillator natural frequencies are chosen such that V� 2 = v̄osc

1 =22·6414
and V� 4 = v̄osc

2 =74·9470 (see Figure 3 for x1 =0·23L). The subscript of V� l for the
second oscillator natural frequency is no longer given by l= n+1, where n is the
normal mode number for which we wish to have a node at x1 (as was the case
for imposing a node for a single normal mode), but by l= n+2, since a new
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T 2

The first six natural frequencies of the combined
system for the two sets of stiffness values, (k�1

1,
k�1

2)= (1155·4604, 2485·6120) and (k�2
1, k�2

2) =
(4971·2339, 579·2302), that induce a node at
0·23L for the second and fourth normal modes.
The oscillator masses are m̄1 = m̄2 =1. The di-
mensionless parameters are defined as follows:
m̄i =mi /(rL), k�j

i = kj
i /(EI/L3), and v̄sys

p =vsys
p /

zEI/(rL4). The oscillator and the node are
collocated

(k�1
1, k�1

2) (k�2
1, k�2

2)

v̄sys
1 5·6297 5·6703

v̄sys
2 22·6414 22·6514

v̄sys
3 57·9118 35·3202

v̄sys
4 74·9470 74·9470

v̄sys
5 103·6586 147·7930

v̄sys
6 158·5028 168·0244

frequency appears between the original pair of frequencies nearest the first
oscillator natural frequency [7], pushing the combined system natural frequency
count up by 1 to n+2. The same bookkeeping applies when more than two
normal modes are required to have a node at x1. For simplicity, it is assumed
m̄1 = m̄2 =1, where m̄i =mi /(rL). Then by choosing values for k�1 and k�2 such that
the grounded chain of oscillators has natural frequencies V� 2 and V� 4 (in effect, by
solving an inverse eigenvalue problem), one obtains the following two sets of
stiffness values: (k�1

1, k�1
2)= (1155·4604, 2485·6120) and (k�2

1, k�2
2)= (4971·2339,

579.2302), where k�j
i = kj

i /(EI/L3) is the dimensionless spring stiffness for the ith
spring in the oscillator chain for the jth set of stiffness values. Table 2 shows the
dimensionless natural frequencies of the combined system for the above sets of
stiffness values. Note that for both cases considered, the second and fourth natural
frequencies of the overall system, v̄sys

2 and v̄sys
4 , coincide with the oscillator natural

frequencies chosen, V� 2 and V� 4. Figure 5 shows the first five normal modes of the
combined system, whose oscillator stiffnesses are given by (k�1

1, k�1
2) (see Figure 5(a))

and (k�2
1, k�2

2) (see Figure 5(b)). While the normal modes are quite different, the
second and fourth normal modes have a node at 0·23L for both sets of the stiffness
values.

Consider now the case where the oscillator chain and the node are not
collocated. To impose a node at x2 for a given normal mode only, a single oscillator
is attached, of parameters k�= k/(EI/L3) and m̄=m/(rL), at x1. For a given x1,
one first solves for the set of v̄sys

j which satisfies equation (36). These v̄sys
j

immediately reveal for which normal modes one can impose a node at x2 when
the oscillator chain is attached at x1. Figure 6 shows the v̄sys

j as a function of x1/L
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for x2 =0·23L. The ith horizontal line denotes the ith natural frequency of a
simply supported Euler–Bernoulli beam. From Figure 6 the following are
observed: (1) For a given x1, when no v̄sys

j lies between v̄beam
i and v̄beam

i+1 , a node
cannot be imposed at x2 for the (i+1)th normal mode. (2) The points of
intersection between the v̄sys

j curves and the ith horizontal line correspond to the
node locations of the ith normal mode of a simply supported Euler–Bernoulli
beam. (3) When x1 and x2 lie close to one another, it is possible to impose a node
at x2 for every normal mode. However, when x1 and x2 are far apart, the number
of normal modes for which one can impose a node decreases significantly, and only
the higher modes can be made to have a node at x2 when the oscillator is attached
at x1. (4) Figure 6 also allows one to determine the possible range of attachment

Figure 5. The first five normal modes of a combined system consisting of a simply supported
Euler–Bernoulli beam to which is attached a chain of two undamped oscillators at 0·23L. The
oscillator parameters, m̄1 = m̄2 =1, (k�1

1, k�1
2)= (1155·4604, 2485·6120) (a) and (k�2

1, k�2
2)= (4971·2339,

579·2302) (b) are chosen such that the second and fourth normal modes have a node at 0·23L. The
grounded oscillator natural frequencies are V� 2 =22·6514 and V� 4 =74·9470. Key as in Figure 4.
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Figure 6. The natural frequencies of the combined system, the v̄sys
j , versus the attachment location,

x1/L, in order to have a node at x2 =0·23L. The horizontal line, v̄beam
i =(ip)2, represents the ith

natural frequency of a simply supported Euler–Bernoulli beam.

location, x1, for which one can successfully induce a node at x2 for a given normal
mode. For example, to impose a node at x2 for the second normal mode whose
natural frequency lies between v̄beam

1 and v̄beam
2 , one can attach an oscillator

anywhere between 0Q x1 QL/2. The permissible ranges to impose a node at x2

for the third normal mode are given by 0Q x1 QL/3 and L/2Q x1 Q 2L/3; for the
fourth normal mode, one has 0Q x1 QL/4, L/3Q x1 QL/2 and 2L/3Q x1 Q 3L/
4. Similar ranges to impose a node at x2 can be found for all the other normal
modes.

The v̄sys
j must also satisfy the frequency equation of the combined system of

Figure 1, which for M=1 can be expressed as

(v̄sys
j )2 − (v̄osc)2 +2m̄(v̄sys

j )2(v̄osc)2 s
N

i=1

sin2 (ipx1/L)
(ip)4 − (v̄sys

j )2 = f(m̄, v̄sys
j , v̄osc)=0,

(40)

where v̄osc =zk/m/zEI/(rL4). For any v̄sys
j which satisfies equation (36), one can

vary v̄osc and plot f(m̄, v̄sys
j , v̄osc) as a function of m̄. By varying m̄ one obtains a

family of curves which reveal the range of m̄ values for which a node can be
induced at x2 when the oscillator is attached at x1. For a given m̄, if f(m̄, v̄sys

j , v̄osc)
fails to have a zero crossing in the range of v̄osc considered, then it is not possible
to have a node at x2 in that oscillator natural frequency range for the normal mode
corresponding to v̄sys

j . Table 3 shows the solution of equation (36), i.e., the values
of v̄sys

j , when x1 =0·15L and x2 =0·23L. The corresponding normal mode number
is also indicated by comparing v̄sys

j to the natural frequencies of a simply supported
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T 3

The required oscillator natural frequency, V� l =Vl /
zEI/(rL4), for a given system natural frequency,
v̄sys

l =vsys
l /zEI/(rL4), in order to induce a node at

x2 =0·23L for the lth normal mode when the
oscillator is at x1 =0·15L (the oscillator and the
node are not collocated). The mass of the oscillator

is m̄=m/(rL)=0·05

v̄sys
l Mode number, l V� l

21·3403 2 21·4378
71·0634 3 74·4099

151·3873 4 367·2292
262·2095 6 199·2957
390·5823 7 336·5236

Euler–Bernoulli beam. Note that for the chosen x1 and x2, it is impossible to
impose a node at 0·23L for the fifth normal mode, since no v̄sys

j exists between v̄beam
4

and v̄beam
5 . The corresponding oscillator natural frequencies required in order to

impose a node for the lth normal mode, the V� l = v̄osc, obtained by solving equation
(40) for m̄=0·05 and a system natural frequency of v̄sys

l , are also shown in Table 3.
While V� l = v̄sys

l when the oscillator and the node are collocated, they are not equal
when the oscillator and the node are not collocated. Table 4 shows the first seven
natural frequencies of the combined system for the oscillator natural frequencies
of Table 3. Figure 7 depicts the first five normal modes of the combined system
when an oscillator of frequency V� l , given in Table 3, is attached at x1 =0·15L.
Note that when the oscillator natural frequency is properly chosen, an oscillator
at x1 gives rise to a node at x2, as shown in Figure 7.

Figure 8 shows a sample plot of f(m̄, v̄sys
j , v̄osc) versus v̄osc for varying values of

m̄. Note that for v̄sys
j =151·3873 and for 0Q v̄osc Q 1000, in order to impose a

node at 0·23L when the oscillator is attached at 0·15L, one must select m̄E 0·0588.

T 4

The natural frequencies of the combined system, the v̄sys
j , for the given x1, x2, m̄ and

oscillator natural frequencies, the V� l , of Table 3. The natural frequencies are
all non-dimensionalized by dividing by zEI/(rL4)

V� 2 =21·4378 V� 3 =74·4099 V� 4 =367·2293 V� 6 =199·2957 V� 7 =336·5236

v̄sys
1 9·7429 9·7671 9·7688 9·7686 9·7688

v̄sys
2 21·3403 37·8291 38·2244 38·1922 38·2219

v̄sys
3 40·0069 71·0634 84·8020 84·2757 84·7640

v̄sys
4 89·0947 96·3967 151·3873 147·9846 151·1935

v̄sys
5 158·0482 160·0288 240·1361 217·6523 239·5334

v̄sys
6 246·7871 247·3760 351·3371 262·2095 349·0227

v̄sys
7 355·3120 355·3848 418·1369 356·2188 390·5823
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Figure 7. The first five normal modes of a combined system consisting of a simply supported
Euler–Bernoulli beam to which is attached an undamped oscillator, of mass m̄=0·05 and natural
frequency V� 2 =21·4378 (a) and V� 3 =74·4099 (b). The attachment and node locations are x1 =0·15L
and x2 =0·23L, respectively. Key as in Figure 4.

Similar plots can be obtained for any v̄sys
j . These plots can be used to determine

the possible range of m̄ values for which a node can be induced at x2 when the
oscillator is attached at x1.

4. CONCLUSIONS

A chain of oscillators can be used as a passive means of imposing nodes for the
normal modes of a linear elastic structure at any location along the structure. To
induce a node at x1 for the jth normal mode only, a single oscillator can always
be attached at x1 whose natural frequency can be extracted from the design plot
of Figure 3 and is identical to v̄sys

j . To induce a node at x1 for l normal modes
simultaneously, a chain of l oscillators is attached at x1 whose grounded natural
frequencies can also be extracted from Figure 3, and are equal to the natural
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Figure 8. A sample plot of f(m̄, v̄sys
j , v̄osc) versus v̄osc for v̄sys

j =151·3873. The m̄ parameter varies
from 0·0580 to 0·0600 with an increment of 0·0004.

frequencies of the l normal modes for which we wish to have a node at x1. A chain
of oscillators can also be attached at x1 and a node imposed at some other location
x2. A design plot such as Figure 6 allows us to determine the possible range of
oscillator locations, x1 in order to induce a node at x2. When the oscillator and
node are not collocated, not all the normal modes can be made to have a node
at x2.

Finally, while the focus of this paper has been on imposing nodes to the free
vibration of a linear elastic structure, the approach could be extended to forced
vibration. Future work will be concerned with minimizing forced vibration at a
given location by attaching damped oscillators of appropriate parameters.
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